Equilibrium structure and folding of a helix-forming peptide: circular dichroism measurements and replica-exchange molecular dynamics simulations.
نویسندگان
چکیده
We have performed experimental measurements and computer simulations of the equilibrium structure and folding of a 21-residue alpha-helical heteropeptide. Far ultraviolet circular dichroism spectroscopy is used to identify the presence of helical structure and to measure the thermal unfolding curve. The observed melting temperature is 296 K, with a folding enthalpy of -11.6 kcal/mol and entropy of -39.6 cal/(mol K). Our simulations involve 45 ns of replica-exchange molecular dynamics of the peptide, using eight replicas at temperatures between 280 and 450 K, and the program CHARMM with a continuum solvent model. In a 30-ns simulation started from a helical structure, conformational equilibrium at all temperatures was reached after 15 ns. This simulation was used to calculate the peptide melting curve, predicting a folding transition with a melting temperature in the 330-350 K range, enthalpy change of -10 kcal/mol, and entropy change of -30 cal/(mol K). The simulation results were also used to analyze the peptide structural fluctuations and the free-energy surface of helix unfolding. In a separate 15-ns replica-exchange molecular dynamics simulation started from the extended structure, the helical conformation was first attained after approximately 2.8 ns, and equilibrium was reached after 10 ns of simulation. These results showed a sequential folding process with a systematic increase in the number of hydrogen bonds until the helical state is reached, and confirmed that the alpha-helical state is the global free-energy minimum for the peptide at low temperatures.
منابع مشابه
Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملThermostat artifacts in replica exchange molecular dynamics simulations.
We explore the effects of thermostats in replica exchange molecular dynamics (REMD) simulations. For thermostats that do not produce a canonical ensemble, REMD simulations are found to distort the configuration-space distributions. For bulk water, we find small deviations of the average potential energies, the buildup of tails in the potential energy distributions, and artificial correlations b...
متن کاملEquilibrium unfolding of the poly(glutamic acid)20 helix.
The equilibrium structural ensemble of a 20-residue polyglutamic acid peptide (E(20)) was studied with FRET, circular dichroism, and molecular dynamics (MD) simulations. A FRET donor, o-aminobenzamide, and acceptor, 3-nitrotyrosine, were introduced at the N- and C-termini, respectively. Circular dichroism, steady state FRET, and time-resolved FRET measurements were employed to characterize the ...
متن کاملDecoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2004